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A Canadian Foothills Project

Study Area

– Hinton FMA ~990,000 ha; 385,000 AVI 
polygons 

• Clients, Partners & Collaborators

– West Fraser Mills, Hinton Wood Prods.

– AB Sustainable Resource Development

– CFS, Pacific Forestry Centre

• Dr. Mike Wulder, Dr. Gordon Frazer, 

Joanne White, Geordie Hobart

– University of BC 

• Dr. Nicholas Coops, Dr. Thomas Hilker,      Danny 
Grills, Martin van Leeuwen, Chris Bater

Partners: WFM - Hinton Wood Prod.; Alberta SRD; CFS–PFC; UBC
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Ground Calibration  Prediction Model Development

• HWP maintains a network of systematically
distributed Permanent Growth Sample Plots

– team used 788 of >3200 available plots 
to develop Prediction Models

– Ordinary Least Squares multiple 
regression and a non-parametric tool 
“Random Forests” (resident in “R” 
statistical software) used to create 
prediction models

– separate models developed for each of 
3 “forest types”, based on AVI spp. 
composition

• “conifer-leading”, “mixed” & 
“deciduous-leading”
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Predicted Inventory Variables  GIS Layers

• Mapped @ “plot-level” & @ AVI “polygon-
level”

– Top Height, Mean Height, & Modal 
Height

– Quadratic Mean Diameter  &  Basal 
Area 

– Total & Merchantable Volume

– Total Above Ground Biomass

• Also mapped all canopy metrics and 
several generalized plot/elevation 
characteristics

– e.g. terrain wetness index, plan & 
profile curvature, solar radiation, hill 
shade, slope & aspect

Total Above Ground 
Biomass (tonnes/ha)
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276 m3/ha

384 m3/ha

164 m3/ha

331 
m3/ha

14 m3/ha

247 m3/ha

33 m3/ha

525 m3/ha

0 m3/ha

Merchantable
Volume
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276 m3/ha

Within-block variability:

Count: 365 cells

Minimum: 102 m3/ha

Maximum: 480 m3/ha

Mean: 276 m3/ha

Std Dev: 70 m3/ha

95% CI:  276 m3/ha ± 7.18 

m3/ha

Merchantable
Volume
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Validation
Weight-scaled volume from 272 cutblocks harvested since LiDAR acquisition 

compared to predictions from LiDAR & Cover Type Adjusted Volume Tables

Information courtesy Hinton Wood Products A division of 

West Fraser Mills Ltd.

Block Size 

(m3 X1000)

Source of

Prediction

Predicted Volume   

– Scaled Volume  

Statistically 

significant?

< 5

n = 138

LiDAR

CT Vol. Table

-6.7%

-23.7%

No

Yes

5 – 10

n = 76

LiDAR

CT Vol. Table

+1.8%

-17.4%

No

Yes

10 – 15

n = 25

LiDAR

CT Vol. Table

-1.2%

-22.3%

No

Yes

15 – 20

n = 15

LiDAR

CT Vol. Table

-4.4%

-23.5%

No

Yes

>20

n = 18

LiDAR

CT Vol. Table

+6.6%

-17.4%

No

No



Pre-existing Inventory Plots Stratified random sample

Selection of ground plots

Select ground plots to capture full range of structural 

variability 



Ground Plot Data Characteristics: 

Size
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• Larger plots are needed to:

• Reduce perimeter-to-area ratio

• Reduce likelihood of edge effects

A

B
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Size
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• Larger plots are needed to:

• Reduce perimeter-to-area ratio

• Reduce likelihood of edge effects

• Minimize geolocation error



Ground Plot Data Characteristics: 

Size

69

• Larger plots are needed to:

• Reduce perimeter-to-area ratio

• Reduce likelihood of edge effects

• Minimize geolocation error

• No universal optimum plots size

• 200–625 m2

• minimize edge effects 

• minimize planimetric co-registration error

• maximize sampling efficiency, precision, and accuracy of 

target and explanatory variables 



Ground Plot Data: 

Representativeness
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Higher errors in modelled outcomes associated with ground calibration 

data that does not capture the full range of structural variability as captured 

by the ALS data

Models perform best when operating within the bounds of their original 

calibration data.



Ground Plot Data: 

Selection of ground plot locations
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• Structurally-guided sample

• Use a few key ALS metrics to stratify the area of interest 

(height, COV of height, canopy cover)

• Select the required number of samples within each 

strata



Ground Plot Data: 

Positioning
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• Accurate geo-referencing is fundamental to maximize the 

predictive power of the model

• Recall that larger plots can help mitigate the impact of geo-

location error

• GPS positioning is challenging in forest environments

• Mapping-grade GPS receivers

• 500 points/location

• Post-processing correction



Modelling
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Parametric regression Random forests

Advantages  Transparent, easy to understand.

 Model is an equation that clearly quantifies the 

relationship between the predictors and the 

variable being predicted.

 Sample size determination is possible for given 

accuracy and precision requirements.

 Categorical variables may be predicted and (or) 

used as predictors.

 Faster and simpler to develop (does not require 

sophisticated statistical expertise).

 Does not require individual strata based models to 

be developed, provided calibration data represent 

the different strata involved.

 Does not require a pre-existing polygon-based 

inventory to implement strata-based models.

Disadvantages  Transformation of ALS metrics (X) or ground plot 

measures may be necessary to meet the 

assumptions of regression-based approaches, 

complicating interpretation and implementation.

 More statistical expertise and time are required to 

create the models.

 With strata-specific models, pre-existing 

stratification across the entire forest (i.e., an 

existing inventory layer) becomes prerequisite to 

implementation. 

 Prediction errors will occur within polygons when 

individual grid cells do not match the overall strata 

assignment (e.g., pockets of aspen within a 

“spruce” polygon).

 “Black box” nature of the models.

 No equation output that is analogous to parametric 

regression.

 More critical to ensure that the full range of 

conditions are sampled, as this approach does not 

extrapolate like regression.



Mapping
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• Once validated models can be 

applied to the entire area of interest 

using wall-to-wall metrics

• Common "no data" mask

• Models developed for specific forest 

types must be applied correctly

• Wall-to-wall rasters can be integrated 

into existing stand level inventories
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Conclusions

• Using LiDAR technology, we can:

– Directly measure tree heights

– Calculate accurate estimates of stem volume and basal area
• Accurate plot data is CRITICAL to accurate estimations of forest attributes

– GPS location of plot centers

– Short time lag between field measurements and LiDAR data collection

• LiDAR technology is continuing to improve
– More pulses per square meter (from 4 to 8 to 12)

• More accurate tree heights 

• Easier to identify individual trees

– Methods to process LiDAR data are improving as well

75
LiDAR visualizations produced with FUSION/LDA software – USDA Forest Service
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Thank you

Wiebe.Nijland@ubc.ca

Nicholas.coops@ubc.ca
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mailto:Wiebe.Nijland@ubc.ca


Resources

 Best Practices Guide

 http://cfs.nrcan.gc.ca/publications?id=34887

 Forestry Chronicle December 2013 Practitioner’s Corner

 http://pubs.cif-ifc.org/doi/pdfplus/10.5558/tfc2013-132

 BC Forest Professional Newsletter (Nov/Dec 2013)

 http://www.abcfp.ca/publications_forms/magazine.asp

 http://cfs.nrcan.gc.ca/publications?id=35300

 CIF Enhanced Forest Inventory website

 http://cif-ifc.org/site/enhancedforestinventory
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http://cfs.nrcan.gc.ca/publications?id=34887
http://pubs.cif-ifc.org/doi/pdfplus/10.5558/tfc2013-132
http://www.abcfp.ca/publications_forms/magazine.asp
http://cfs.nrcan.gc.ca/publications?id=35300
http://cif-ifc.org/site/enhancedforestinventory
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