

Tree Level Analysis

Height (m) 40 20 34,4 m^{35.6 m} 40.7 m 35.9 m 34.8 m 33.0 m

Step 1: Create Digital Surface Model (DSM)

Step 2: Deploy algorithms to identify peaks in DSM

Difficult in dense canopies

Tree Level Analysis

Tree Level Analysis

Identification of individual trees using a Digital Surface Model

DSM with trees identified

DSM

Tree Level Analysis – Maximum Tree Height

- High levels of accuracy with differences generally < 1 m
- Some argue LiDAR heights are more accurate than field measurements of tree height
- The derivation of tree heights will be affected by:
 - Sampling density
 - High density improves changes of hitting tree top
 - Tree dimensions
 - A smaller crown will have fewer returns
 - Occlusion
 - Adjacent trees

Tree Level Analysis – Maximum Tree Height

- Summarize LiDAR data on a grid
- Use summary metrics to estimate forest attributes for each grid cell
- Must first develop relationships between LiDAR metrics and forest attributes

- Summarize LiDAR data on a grid
- Use summary metrics to estimate forest attributes for each grid cell
- Must first develop relationships between LiDAR metrics and forest attributes

- Extract LiDAR data associated with each plot
- Summarize the LiDAR data within each plot
- Develop relationships between the LiDAR metrics and the plot level data

Low Volume Example

- Use first returns to calculate LiDAR metrics
 - Forest attributes calculated with first returns found to be more robust than using all returns (Bater et. al 2011)

LiDAR visualizations produced with FUSION/LDA software - USDA Forest Service

LiDAR visualizations produced with FUSION/LDA software – USDA Forest Service

- Once metrics are calculated at the plot level:
 - Investigate the relationships between metrics and measured forest attributes
 - Mean tree height, dominant tree height, stem volume, basal area
 - Develop statistical models to predict forest attributes using several LiDAR metrics
 - Usually a combination of a height and cover metric
 - Statistical models are applied to gridded LiDAR metrics to predict forest attributes across the study area

Best Practices Guide

- Released July 2013
- Synthesizes 25 years of scientific research
- Available for download from CFS bookstore: http://cfs.nrcan.gc.ca/public ations?id=34887

52

Canada

Area-based approach

- 1. Grid the point cloud
- 2. Calculate wall-to wall LiDAR metrics
- 3. Ground sample within the range of variability characterized by the LiDAR metrics
- 4. Clip the point clouds to the area corresponding to the ground plots
- 5. Develop model
- 6. Apply model

LiDAR visualizations produced with FUSION/LDA software - USDA Forest Service

How do we relate lidar to ground data?

- GPS ground plot location
- Make ground measures
- Statistically relate ground measures to lidar metrics
- Can apply these relationships across all lidar grid cells (25 x 25m)
- Metrics not limited to height
- Inventory: Generalize by polygon (ht in m):

Radius (m)	Plot Size (m ²)	Fitted OLS Regression Model		SEE
20	1257	$\hat{Y} = -51.3755 + 13.0245 \times Lh_{0.6} + 3.6330 \times CC_{0.0}$	0.960	38.64

$\hat{Y} - TAGB$

- *Lh*0.5 50th percentile of laser canopy height (m).
- *Lh*0.6 60th percentile of laser canopy height (m);
- CC0.0 canopy density (%) at 2 m above the ground surface.
- R^2 multiple coefficient of determination.
- SEE standard error of the estimate in transformed units.

Example of Multiple Regression Equations at the Plot Scale

Table 6

Relationships between logarithmic transformations of ground-based characteristics of the 200 m² sample plots (dependent variables) and laser-derived metrics from stepwise multiple regression analysis

Dependent variable ^a	Predictive model ^b	R^2	RMSE	к
Young forest (n = 56)				
In h _L	$0.46 \pm 1.149 \ln h_{901} - 0.28 \ln h_{maxl}$	0.95	0.06	5.0
In h _{dom}	$0.568 \pm 1.169 \ln h_{90t} - 0.286 \ln h_{maxt}$	0.93	0.07	5.0
$\ln d_g$	$-0.867 \pm 0.217 \ln h_{101} \pm 0.665 \ln h_{801} - 0.805 \ln d_{801}$	0.78	0.12	3.1
$\ln N$	$15.99 - 1.182 \ln h_{801} + 3.08 \ln d_{801}$	0.68	0.28	1.8
In G	$3.492 \pm 0.536 \ln h_{10r} \pm 1.388 \ln d_{50r}$	0.89	0.14	2.2
ln V	$3.473 \pm 1.336 \ln h_{meanl} \pm 1.477 \ln d_{50f}$	0.93	0.16	2.0
Mature forest, poor site qui	ality $(n=36)$			
$\ln h_{\rm L}$	$0.285 \pm 1.011 n h_{90f} - 0.1071 n h_{50f}$	0.86	0.05	2.2
In h _{dom}	$-0.0187 \pm 1.002 \ln h_{maxf}$	0.74	0.08	1.0
$\ln d_{g}$	$0.206 \pm 0.77 \ln h_{901} - 0.312 \ln d_{801}$	0.54	0.12	1.4
ln N	$11.24 + 1.195 \ln h_{of} - 1.662 \ln h_{maxf} + 1.156 \ln d_{201}$	0.65	0.30	1.7
ln G	$4.253 + 4.304 \ln h_{50f} - 4.022 \ln h_{60f} + 0.584 \ln d_{90f}$	0.69	0.21	8.5
ln V	$4.951 - 1.278 {\rm ln}~h_{\rm 30f} + 5.994 {\rm ln}~h_{\rm 50f} - 3.8 {\rm ln}~h_{\rm 60f} + 0.766 {\rm ln}~d_{\rm 90f}$	0.80	0.20	11.7
Mature forest, good site qu	ality $(n = 52)$			
ln h _L	0.35+0.529in h90f+0.355in hmaxf	0.82	0.07	5.9
In h _{dom}	$0.525 \pm 0.23 \ln h_{80f} \pm 0.637 \ln h_{maxf} \pm 0.084 \ln d_{10f}$	0.85	0.07	4.3
In d _g	$0.441 \pm 0.64 \ln h_{901} - 0.277 \ln d_{901}$	0.39	0.12	1.7
ln N	$10.33 - 0.487 \ln h_{01} - 0.667 \ln h_{cvf} + 1.187 \ln d_{50f}$	0.50	0.35	1.9
ln G	3.608+2.629ln h ₈₀₁ -2.157ln h _{maxf} +1.26ln d _{50f}	0.75	0.21	3.8
In V	$3.151 + 3.027 \ln h_{801} - 1.66 \ln h_{maxf} + 1.223 \ln d_{50f}$	0.80	0.22	3.8

^a h_L = Lorey's mean height (m), h_{dom} = dominant height (m), d_g = mean diameter by basal area (cm), N = stem number (ha⁻¹), G = basal area (m² ha⁻¹), V = volume (m³ ha⁻¹).

Source: Næsset 2002