Introduction to LiDAR Technology and Applications in Forest Management

Wiebe Nijland Rory Tooke, Douglas Bolton and Nicholas Coops Integrated Remote Sensing Studio Faculty of Forestry University of British Columbia. Canada

What is LiDAR?

- LiDAR = Light Detection And Ranging
- Active form of remote sensing
- Measures the distance to target surfaces using narrow beams of near-infrared light (*e.g.*1064 nm).
- Primarily operated on airborne platforms for forestry applications
 - However spaceborne (GLAS) and field based LiDAR instruments have also been developed.

R = Range or distance

c = Speed of light (299 792 km / sec)

tp = Time the pulse is emitted from the sensor

t = Time the pulse arrives back at the sensor

Divided by 2 to compensate for the round-trip distance

LIDAR from Space (Theoretical)

Images and movies from NASA and used with permission

- Profiling LiDAR
- Small-footprint LiDAR
- Large-footprint LiDAR
- Ground based LiDAR

Profiling LiDAR

- Early airborne LiDAR instruments
- Measure height information along single transects with a fixed nadir view angle

(a) Forest Stand

- Advantages:
 - Relatively inexpensive technology
 - Great sampling tool
- Limitation:

(c) Surveyed Transect

Flight Line

- Lack of spatial detail

(b) Volume Slice

LiDAR Scanning Pattern

- More advanced scanning systems were later developed (~1990s onwards).
 - Rotating mirror used to direct pulses perpendicular to flight direction
- Both small- and largefootprint LiDAR use this approach

Small-footprint LiDAR

- Beam diameters at intercepting surface < 1 m
- Typically record high sampling densities (>1 / m²)
- Accuracy ~15 cm vertically and 40 cm horizontally
- Operated on fixed wing or helicopter platforms
- Commercially available
- Sensors now emit up to 260 000 pulses / sec
 3 years ago this was closer to 25 000 pulses / sec
- Increase from first / last return combinations to 5 returns per pulse
 - Ability to separate returns by smaller distances (e.g. 2 m intervals)
 - Option to record full waveform is becoming more common

Large-footprint LiDAR

- These instruments use larger beam diameters at intercepting surface (generally 5 to 25 m)
- Signal is averaged across the footprint
 - Record the entire returned signal as a function of time (waveform)
- Currently only experimental (e.g. SLICER and LVIS)

Ground based LiDAR

- Scanner is placed below the forest canopy
- Algorithms are deployed to detect individual tree stems
 - Stems can be occluded by other stems
- Current research aims to make ground based LiDAR an operational inventory tool

Airborne Laser Scanning

- The coordinates (x, y, z) of target objects are determined by:
 - 1. Differential GPS (DGPS)
 - Determine precise location of the LiDAR instrument
 - 2. Inertial Measurement Unit (IMU) -Determine the orientation of the LiDAR instrument
 - 3. LiDAR pulse orientation
 - 4. Range to target object-By recording the time until pulse return

A LiDAR Pulse

Bluewater Business Solutions darren@bluewatersolutions.ca]

A waveform describes the entire return intensity as a function of time for each pulse

Waveform Data

- Waveform data is less common than discrete return data
 - As technology advances, it is becoming easier to record the full waveform
- Much larger volume of data
- Methods of processing waveform data are not as advanced

Discrete Return Data

- The returned pulse is classified into one or more discrete returns
 - Returns are recorded when the return energy exceeds the systems predefined threshold
 - Early LiDAR systems were designed to record only the distance to the first target
 - Later systems recorded multiple returns
 - Last returns are particularly important for detecting the ground surface

Discrete Return Data

• Cross-section of discrete return data

LiDAR Technology

- Advantages of LiDAR technology:
 - Assessment of vertical structure of forests at high spatial resolutions
 - Accurate estimates of surface height
 - Can operate independently of sunlight
- Growing interest in LiDAR in past two decades:
 - In the beginning, primary interest was the development of digital elevation models (DEM)
 - Looking past the vegetation
 - In the past decade, the potential for LiDAR in forestry applications has been realized
 - Measure tree heights to sub-metre levels of accuracy
 - Estimate forest attributes such as stem volume and basal area

Working with Discrete Return LiDAR data

 How do we derive meaningful measurements from a LiDAR point cloud?

TERRAIN GENERATION

- LIDAR usually has high spatial sampling (0.1 4 m).
- Accuracy of 3-D location very good (<20 cm).
- Post-processing is done to ensure
 - Recommend 2 GPS ground receivers with known positions making absolute georeferencing possible
 - Filtering of data to ascertain ground versus non-ground hits.
- Typical Accuracies: 15 cm in elevation and horizontal position
- Spot spacing much denser for slower aircraft
- More reliable/accurate DTM through denser spot spacing more data collected
- Highest accuracy heights at nadir and decrease as swath angle increases

Creating A Digital Elevation Model (DEM)

Step 1: Extract probable ground returns

- Ground points are often classified by LiDAR vendor

Step 2: Create surface from ground returns

Creating A Digital Elevation Model (DEM)

- The density of ground points depends on the vegetation structural class
- Fewer pulses will reach the surface under dense canopies
- Methods of interpolation are needed where ground return densities are low

Analysis performed at Pacific Rim National Park, Vancouver Island

Interpolation Methods

Fitted Surface

Interpolation is the estimation of • values at unsampled locations. **Measured Point** Natural Neighbor Algorithms fit a continuous surface through a set of measured points (e.g. LiDAR ground returns) Algorithms differ in their ease of use, mathematical complexity, and computational expense. Spline Inverse Distance Weighted (IDW) 20 Sources: Johnston et al. 2001; Maune et al. 2001

Creating A Digital Elevation Model (DEM)

Creating A Digital Elevation Model (DEM)

- Validating DEM
 - Difficult task due to high level of accuracy
 - Differential GPS is affected by vegetation cover (Naesset and Jonmeister, 2002).
 - DEM accuracy may vary spatially across the landscape due to vegetation cover and ground slope
 - Accuracy is generally within 1 m

DEM of Alex Fraser Research Forest)

Current uses in operational planning:

- Contour lines
 - Road planning
 - Block boundaries
 - Stream modeling
- Operational slope classes
 - < 35% slope: Conventional ground skidding
 - 35-50% slope: Requires specialized equipment
 - > 50% slope: Consider cable yarding

Uses provided by: Don Skea, AFRF

Visualization for Malcolm Knapp Research Forest

Lidar visualizations produced with FUSION/LDA software - USDA Forest Service

Derive Heights in Relation to the Surface

Point elevation

Derive Heights in Relation to the Surface

Derive Heights in Relation to the Surface

- Two scales of analysis are commonly undertaken
 - Tree scale
 - Individual trees located in the LiDAR data and a range of tree attributes derived (*e.g.* Maximum tree height, crown area, basal area....)
 - Plot scale
 - Attributes are estimated over a defined area (square, rectangular or circular). For example, maximum plot height, basal area, height percentiles